
DIGITAL ELECTRONICS

 | MREC(A)

MODULE 1

Number systems& Binary codes:

 Number systems: Number Systems, Radix conversions, complement of numbers.
 Binary codes: Binary codes, Weighted and non-Weighted codes, BCD code, gray code,

excess 3codes - Error detecting code, Error Correcting code, Hamming Code
INTRODUCTION

DIGITAL CIRCUIT:

 Digital circuit is one in which the voltage levels assume a finite number of distinct values.
 Each voltage level in a practical digital system can actually be a narrow band or range of voltages.
 Also called as switching circuits, the voltage levels in a digital circuit are assumed to be switched

from one value to another value instantaneously, that is the transition time is assumed to be zero.
A) COMBINATIONAL SWITCHING CIRCUITS:

 The output depends only on the present inputs.
 They have no memory.

B) SEQUENTIAL SWITCHING CIRCUITS
 The output depends on the present inputs as well as the present state of the circuit,

i.e., on the past values also.
 These are combinational circuits with memory.

 SEQUENTIAL SWITCHING CIRCUITS:
a) SYNCHRONOUS SEQUENTIAL CIRCUITS.: Digital sequential circuits in which the

feedback to the input for next output generation is governed by clock signals.
b) ASYNCHRONOUS SEQUENTIAL CIRCUITS: Digital sequential circuits in which the

feedback to the input for next output generation is not governed by clock signals.
DIGITAL CIRCUIT is also called as Binary signals or Logic signals.

 The digital signals are represented by two voltage bands, one band which is near a reference value
(generally 0), and the other band lies near the supply voltage.

DIGITAL ELECTRONICS

 | MREC(A)

 This is similar to the values, ‘0’ and ‘1’ or ‘false’ and ‘true’ of the Boolean domain.
 This means that at any particular time, a digital signal can represent only one binary digit.
 The manner in which a logic circuit responds to an input as referred to as the circuit logic.

Application:

 Thermometer, photocopies, landline telephones, audiotape recorders, television, computers,
laptops, mobile phones, wristwatches, wall clocks, are all becoming digital nowadays.

 It increases the accuracy of the message as well as makes it easy to read.
Advantages of Digital system or signals:

 Because of the digital nature, the signals in the digital systems can travel significantly faster over
digital lines as compared to the Analog signals

 As compared to Analog signals, digital signals can transfer more data.
 The digital systems are less expensive, more reliable, easy to manipulate, and more flexible as

compared to the Analog system.
 A digital system can be made compatible with other digital systems to which is not possible in the

Analog system.

1. THE DECIMAL SYSTEM

2. THE BINARY SYSTEM

BINARY TO DECIMAL CONVERSION

The binary numbering system works just like the decimal numbering system, with two exceptions:

 binary only allows the digits 0 and 1 (rather than 0–9), and
 binary uses powers of two rather than powers of ten.

DIGITAL ELECTRONICS

 | MREC(A)

Therefore, it is very easy to convert a binary number to decimal. For each “1” in the binary string, add 2n
where “n” is the bit position in the binary string (0 to n–1 for n bit binary string).

For example, the binary value 10102 represents the decimal 10 which can be obtained through the
procedure shown in the table 1:

Table 1

Binary No. 1 0 1 0

Bit Position (n) 3rd 2nd 1st 0th

Weight Factor (2n) 23 22 21 20

bit * 2n 1*23 0*22 1*21 0*20

Decimal Value 8 0 2 0

Decimal Number 8 + 0 + 2 + 0 = 10

All the steps in above procedure can be summarized in short as

1*23 + 0*22 + 1*21 + 0*20 = 8 + 0 + 2 + 0 = 1010

i.e.,

1. Multiply each digit of the binary number by its positional weight and then add up the result.

2. If any digit is 0, its positional weight is not to be taken into account.

DECIMAL TO BINARY CONVERSION

3. OCTAL NUMBERING SYSTEM:

 The octal number system uses base 8 instead of base 10 or base 2.
 This is sometimes convenient since many computer operations are based on bytes (8 bits). In octal,

we have 8 digits at our disposal, 0–7.
DECIMAL OCTAL

0 0

DIGITAL ELECTRONICS

 | MREC(A)

1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 10
9 11
10 12
11 13
12 14
13 15
14 16
15 17
16 20

Octal to binary

DIGITAL ELECTRONICS

 | MREC(A)

3. HEXADECIMAL NUMBERING SYSTEM
• Hexadecimal uses a base 16 numbering system. This means that we have 16 symbols to use for

digits. Consequently, we must invent new digits beyond 9.

• The digits used in hex are the letters A, B, C, D, E, and F.

DIGITAL ELECTRONICS

 | MREC(A)

DIGITAL ELECTRONICS

 | MREC(A)

NEGATIVE NUMBERS AND THEIR ARITHMETIC

So far, we have discussed straight forward number representation which are nothing but positive number.
The negative numbers have got two representation

 Complement representation. In digital computers to simplify the subtraction operation & for logical
manipulation complements are used. There are two types of complements used in each radix system.

o The radix complement or r’s complement
o The diminished radix complements or (r-1)’s complement

r’s Complement and (r – 1)’s Complement

The r’s and (r – 1)’s complements are generalized representation of the complements. r stands for
radix or base of the number system; thus, r’s complement is referred as radix complement and (r –
1)’s complement is referred as diminished radix complement. Examples of r’s complements are 2’s
complement and 10’s complement. Examples of (r – 1)’s complement are 1’s complement and 9’s

 Sign magnitude representation : Representation of signed no’s binary arithmetic in computers: Two

ways of representation of signed no’s Sign Magnitude for Complemented form, Two complimented
forms: 1‘s compliment form, & 2‘s compliment form

1’s and 2’s Complement: These are the complements used for binary numbers. Their
representation are very important as digital systems work on binary numbers only.

1’s Complement

bit Actual binary complement

DIGITAL ELECTRONICS

 | MREC(A)

1’s complement of a binary number is
obtained simply by replacing each 1 by 0
and each 0 by 1. Alternately, 1’s
complement of a binary can be
obtained by subtracting each bit from 1.

EX: Find 1’s complement of (i) 011001 (ii) 00100111

Sol: (i) Replace each 1 by 0 and each 0 by 1

0 1 1 0 0 1

↓ ↓ ↓ ↓ ↓ ↓

1 0 0 1 1 0

So, 1’s complement of 011001 is 100110.

2’s Complement: 2’s complement of a binary number can be obtained by adding 1 to its 1’s complement.

EX: Find 2’s complement of (i) 011001 (ii) 010110016

Solution.

Subtraction Using 1’s and 2’s Complement

Before using any complement method for subtraction equate the length of both minuend and subtrahend
by introducing leading zeros.

1’s complement subtraction following are the rules for subtraction using 1’s complement.

1. To do the subtraction (M-S), represent the M&S in equal no. of digits.

2. Add 1’s complement of subtrahend to minuend.

3. If a carry is produced by addition, then add this carry to the LSB of result. This is called as end around
carry (EAC).

4. If carry is generated from MSB in step 2 then result is positive. If no carry generated result is negative,
and is in 1’s complement form.

EX: Perform binary subtraction for (23)10-(11)10

Sol: M= 23, 10111

 S= 11, 1011

1’s Complement 1 0

 0 1

DIGITAL ELECTRONICS

 | MREC(A)

Step 1: represent the M&S in equal no. of digits. 10111=23

 01011=11

Step 2: 1’s complement of subtrahend (01011) = 10100

 Add 1’s complement of subtrahend to minuend 10111= M

 + 10100=1’S Comp of S

 Carry

Step3: If a carry is produced by addition, then add this carry to the LSB of result.

01011

+ 1

01100 =12

2’s complement Subtraction:

 Method of 2’s complement is similar to 1’s complement subtraction except the end around carry (EAC).
The rules are listed below:

1. To do the subtraction (M-S), represent the M&S in equal no. of digits.
2. Take 2’s complement of subtrahend. Add 2’s complement of subtrahend to minuend.

3. If a carry is produced, then discard the carry and the result is positive. If no carry is produced result is
negative and is in 2’s compliment form.

EX: Perform binary subtraction for (22)10-(12)10 Using 2’s complement

Sol: M= 22, 10110

 S= 12, 1100

Step 1: represent the M&S in equal no. of digits. 10110=22

 01100=12

Step 2: 2’s complement of subtrahend (01100) = 10100

 Add 2’s complement of subtrahend to minuend 10110= M

 + 10100=1’S Comp of S

Carry

(Neglected)

Step 3: If a carry is produced, then discard the carry and the result is positive = (01010) = (10)10

Signed Binary Representation

Untill now we have discussed representation of unsigned (or positive) numbers, except one or two places.
In computer systems sign (+ve or –ve) of a number should also be represented by binary bits.

The accepted convention is to use 1 for negative sign and 0 for positive sign. In signed representation
MSB of the given binary string represents the sign of the number, in all types of representation. We have
two types of signed representation:

101011

101010

DIGITAL ELECTRONICS

 | MREC(A)

1. Signed Magnitude Representation

2. Signed Complement Representation

sign magnitude representation.

In a signed-magnitude representation, the MSB represent the sign and rest of the bits represent the
magnitude. e.g.,

Note that positive number is represented similar to unsigned number.
From the example it is also evident that out of 4-bits, only 3-bits are used to represent the magnitude.

Complement of signed magnitude representation

In a signed-complement representation the positive numbers are represented in true binary form with
MSB as 0. Whereas the negative numbers are represented by taking appropriate complement of equivalent
positive number, including the sign bit. Both 1’s and 2’s complements can be used for this purpose e.g.,

+5 = (0101)2

–5 = (1010)2 ←in 1’s complement

 = (1011)2 ←in 2’s complement

9’s and 10’s Complement

9’s and 10’s complements are the methods used for the representation of decimal numbers. They are
identical to the 1’s and 2’s complements used for binary numbers.

9’s complement: 9’s complement of a decimal number is defined as (10n – 1) – N, where n is no. of digits
and N is given decimal numbers. Alternately, 9’s complement of a decimal number can be obtained by
subtracting each digit from 9.

9’s complement of N = (10n–1) –N

DIGITAL ELECTRONICS

 | MREC(A)

EX: Find out the 9’s complement of (36)10.

Sol: By using (10n–1) – N; n = 2. So, (10n–1) – N = (100 – 1) – 36=63

10’s complement: 10’s complement of a decimal number is defined as 10n – N.10’s complement of N =
10n – N (or)

10n – N = (10n – 1) – N + 1= 9’s complement of N + 1. Thus, 10’s complement of a decimal number can
also be obtained by adding 1 to its 9’s complement.

EX: Find out the 10’s complement of (36)10.

CODES

Coding and encoding is the process of assigning a group of binary digits, commonly referred to as ‘bits’,
to represent, identify, or relate to a multivalued items of information. In short, a code is a symbolic
representation of an information transform. The bit combination is referred to as ‘CODEWORDS’.

In a broad sense we can classify the codes into five groups:

(i) Weighted Binary codes (ii) Non-weighted codes (iii) sequential codes(iv) Error–detecting codes
(v) Error–correcting codes (vi) Alphanumeric codes

i) Weighted Binary Codes
In weighted binary codes, each position of a number represents a specific weight. The bits are multiplied
by the weights indicated; and the sum of these weighted bits gives the equivalent decimal digit.

a) Straight Binary coding: is a method of representing a decimal number by its binary equivalent. A
straight binary code representing decimal 0 through 7

b) Binary Codes Decimal Codes (BCD codes). In BCD codes, individual decimal digits are coded in
binary notation and are operated upon singly. Thus, binary codes representing 0 to 9 decimal digits
are allowed. Therefore, all BCD codes have at least four bits (min. no. of bits required to encode
to decimal digits = 4) For example, decimal 364 in BCD
3 → 0011

DIGITAL ELECTRONICS

 | MREC(A)

6 → 0110

4 → 0100

364 → 0011 0110 0100

However, we should realize that with 4 bits, total 16 combinations are possible (0000, 0001, ..., 1111) but
only 10 are used (0 to 9). The remaining 6 combinations are invalid and commonly referred to as
‘UNUSED CODES’

ii) Non weighted codes

Non weighted codes are codes that are not positionally weighted. That is, each position within the binary
number is not assigned a fixed value. Ex: Excess-3 code, Gray code.

Excess-3 Code

Excess-3 is a non-weighted code used to express decimal numbers. The code derives its name from the
fact that each binary code is the corresponding 8421 code plus 0011(3).

Gray Code

The Gray code belongs to a class of codes called minimum change codes, in which only one bit in the
code changes when moving from one code to the next. The Gray code is non-weighted code, as the
position of bit does not contain any weight. The Gray code is a reflective digital code which has the
special property that any two subsequent numbers codes differ by only one bit. This is also called a unit-
distance code. In digital Gray code has got a special place.

DIGITAL ELECTRONICS

 | MREC(A)

DIGITAL ELECTRONICS

 | MREC(A)

XS-3 gray code:

In a normal gray code , the bit patterns for 0(0000) & 9(1101) do not have a unit
distance between them i.e, they differ in more than one position.In xs-3 gray code ,
each decimal digit is encoded with gray code patter of the decimal digit that is greater
by 3. It has a unit distance between the patterns for 0 & 9.

XS-3 gray code for decimal digits 0 through 9

Decimal digit Xs-3 gray code Decimal digit Xs-3 gray code

0 0010 5 1100

1 0110 6 1101

2 0111 7 1111

3 0101 8 1110

4 0100 9 1010

iii) Sequential Codes

A code is said to be sequential when two subsequent codes, seen as numbers in binary representation,
differ by one. This greatly aids mathematical manipulation of data. The 8421 and

Excess-3 codes are sequential, whereas the 2421 and 5211 codes are not.

Binary coded decimal (bcd) and its arithmetic:

The BCD is a group of four binary bits that represent a decimal digit. In this representation each digit of a
decimal number is replaced by a 4-bit binary number (i.e., a nibble). Since a decimal digit is a number
from 0 to 9, a nibble representing a number greater than 9 is invalid BCD. For example (1010)2 is invalid
BCD as it represents a number greater than 9.

DIGITAL ELECTRONICS

 | MREC(A)

BCD Addition: In many application it is required to add two BCD numbers. But the adder circuits used
are simple binary adders, which does not take care of peculiarity of BCD representation. Thus one must
verify the result for valid BCD by using following rules:

1. If Nibble (i.e., group of 4-bits) is less than or equal to 9, it is a valid BCD number.

2. If Nibble is greater than 9, it is invalid. Add 6 (0110) to the nibble, to make it valid. Or If a carry was
generated from the nibble during the addition, it is invalid. Add 6 (0110) to the nibble, to make it valid.

3. If a carry is generated when 6 is added, add this carry to next nibble.

EX: Add the BCD numbers i)1000 and 0101 and ii) 00011001 and 00011000

BCD Subtraction:

The best way to cary out the BCD subtraction is to use complements. e. Although any of the two
complements can be used, we prefer 10’s complement for subtraction. Following are the steps to be
followed for BCD subtraction using 10’s complement:

1. Add the 10’s complement of subtrahend to minuend.
2. Apply the rules of BCD addition to verify that result of addition is valid BCD.
3. Apply the rules of 10’s complement on the result obtained in step 2, to declare the final result i.e.,
to declare the result of subtraction.
Ex: Subtract 61 from 68 using BCD.
Solution. To illustrate the process first we perform the subtraction using 10’s comple ment in decimal
system. After that we go for BCD subtraction.
we have, D = 68 – 61
So, 10’s complement of 61 = 99 – 61 + 1 = 39

Some example of BCD codes are:

DIGITAL ELECTRONICS

 | MREC(A)

(a) 8421 BCD code, sometimes referred to as the Natural Binary Coded Decimal Code (NBCD);
(b)* Excess-3 code (XS3); adding 3 to BCD gives the Excess -3 code.
(c)** 84 –2 –1 code (+8, +4, –2, –1);
(d) 2 4 2 1 code

DIGITAL ELECTRONICS

 | MREC(A)

Binary codes block diagram

Error – Detecting codes: When binary data is transmitted & processed,it is susceptible to noise
that can alter or distort its contents. The 1‘s may get changed to 0‘s & 1‘s .because digital
systems must be accurate to the digit, error can pose a problem. Several schemes have been
devised to detect the occurrence of a single bit error in a binary word, so that whenever such
an error occurs the concerned binary word can be corrected & retransmitted.

Parity: The simplest techniques for detecting errors is that of adding an extra bit known as
parity bit to each word being transmitted.Two types of parity: Oddparity, evenparity forodd
parity, the parity bit is set to a ‗0‘ or a ‗1‘ at the transmitter such that the total no. of 1 bit
in the word including the parity bit is an odd no.For even parity, the parity bit is set to a ‗0‘
or a ‗1‘ at the transmitter such that the parity bit is an even no.

Decimal 8421 code Odd parity Even parity

0 0000 1 0

1 0001 0 1

2 0010 0 1

3 0011 1 0

4 0100 0 1

5 0100 1 0

6 0110 1 0

7 0111 0 1

8 1000 0 1

9 1001 1 0

DIGITAL ELECTRONICS

 | MREC(A)

When the digit data is received . a parity checking circuit generates an error signal if

the total no of 1‘s is even in an odd parity system or odd in an even parity system. This parity
check can always detect a single bit error but cannot detect 2 or more errors with in the same
word.Odd parity is used more often than even parity does not detect the situation. Where all
0‘s are created by a short ckt or some other fault condition.

Ex: Even parity scheme
(a) 10101010 (b) 11110110 (c)10111001
Ans:

(a) No. of 1‘s in the word is even is 4 so there is no error
(b) No. of 1‘s in the word is even is 6 so there is no error
(c) No. of 1‘s in the word is odd is 5 so there is error

Ex: odd parity
(a)10110111 (b) 10011010 (c)11101010

Ans:

(a) No. of 1‘s in the word is even is 6 so word has error
(b) No. of 1‘s in the word is even is 4 so word has error
(c) No. of 1‘s in the word is odd is 5 so there is no error

Checksums:

Simple parity can‘t detect two errors within the same word. To overcome this, use a
sort of 2 dimensional parity. As each word is transmitted, it is added to the sum of the
previously transmitted words, and the sum retained at the transmitter end. At the end of
transmission, the sum called the check sum. Up to that time sent to the receiver. The receiver
can check its sum with the transmitted sum. If the two sums are the same, then no errors
were detected at the receiver end. If there is an error, the receiving location can ask for
retransmission of the entire data, used in teleprocessing systems.

Block parity:

Block of data shown is create the row & column parity bits for the data using
odd parity. The parity bit 0 or 1 is added column wise & row wise such that the total
no. of 1‘s in each column & row including the data bits & parity bit is odd as

DIGITAL ELECTRONICS

 | MREC(A)

Data Parity bit data
10110 0 10110
10001 1 10001
10101 0 10101
00010 0 00010
11000 1 11000
00000 1 00000
11010 0 11010

Error –Correcting Codes:

A code is said to be an error –correcting code, if the code word can always be deduced from an
erroneous word. For a code to be a single bit error correcting code, the minimum distance of that code
must be three. The minimum distance of that code is the smallest no. of bits by which any two code
words must differ. A code with minimum distance of 3 can‘t only correct single bit errors but also
detect (can‘t correct) two bit errors, The key to error correction is that it must be possible to detect &
locate erroneous that it must be possible to detect & locate erroneous digits. If the location of an error
has been determined. Then by complementing the erroneous digit, the message can be corrected ,
error correcting , code is the Hamming code , In this , to each group of m information or message or

data bits, K parity checking bits denoted by P1,P2,----------pk located at positions 2 k-1 from left are
added to form an (m+k) bit code word.
To correct the error, k parity checks are performed on selected digits of each code
word, & the position of the error bit is located by forming an error word, & the error bit
is then complemented. The k bit error word is generated by putting a 0 or a 1 in the 2 k-

1th position depending upon whether the check for parity involving the parity bit Pk is
satisfied or not.Error positions & their corresponding values :

DIGITAL ELECTRONICS

 | MREC(A)

Error Position For 15 bit code For 12 bit code For 7 bit code
 C4 C3 C2 C1 C4 C3 C2 C1 C3 C2 C1

0 0000 0000 0 0 0

1 0001 0001 0 0 1

2 0010 0010 0 1 0

3 0011 0011 0 1 1

4 0100 0100 1 0 0

5 0101 0101 1 0 1

6 0 1 1 0 0 1 1 0 1 1 0

7 0 1 1 1 0 1 1 1 1 1 1

8 1 0 0 0 1 0 0 0

9 1 0 0 1 1 0 0 1

10 1 0 1 0 1 0 1 0

11 1 0 1 1 1 0 1 1

12 1 1 0 0 1 1 0 0

13 1 1 0 1

14 1 1 1 0

15 1 1 1 1

7- bit Hamming code:

To transmit four data bits, 3 parity bits located at positions 20 21&22 from
left are added to make a 7 bit codeword which is then transmitted.

The word format

 P1 P2 D3 P4 D5 D6 D7

D—Data bits P-
Parity bits

Decimal Digit For BCD For Excess-3
 P1P2D3P4D5D6D7 P1P2D3P4D5D6D7

0 0 0 0 0 0 0 0 1 0 0 0 0 1 1

1 1 1 0 1 0 0 1 1 0 0 1 1 0 0

2 0 1 0 1 0 1 1 0 1 0 0 1 0 1

3 1 0 0 0 0 1 1 1 1 0 0 1 1 0

4 1 0 0 1 1 0 0 0 0 0 1 1 1 1

5 0 1 0 0 1 0 1 1 1 1 0 0 0 0

6 1 1 0 0 1 1 0 0 0 1 1 0 0 1

7 0 0 0 1 1 1 1 1 0 1 1 0 1 0

DIGITAL ELECTRONICS

 | MREC(A)

8 1 1 1 0 0 0 0 0 1 1 0 0 1 1

9 0 0 1 1 0 0 1 0 1 1 1 1 0 0

DIGITAL ELECTRONICS

 | MREC(A)

Ex: Encode the data bits 1101 into the 7 bit even parity Hamming Code
The bit pattern is
P1P2D3P4D5D6D7

1 1 0 1

Bits 1,3,5,7 (P1 111) must have even parity, so P1 =1
Bits 2, 3, 6, 7(P2 101) must have even parity, so P2 =0
Bits 4,5,6,7 (P4 101)must have even parity, so P4 =0

The final code is 1010101
EX: Code word is 1001001
Bits 1,3,5,7 (C1 1001) →no error →put a 0 in the 1‘s position→C1=0
Bits 2, 3, 6, 7(C2 0001)) → error →put a 1 in the 2‘s position→C2=1
Bits 4,5,6,7 (C4 1001)) →no error →put a 0 in the 4‘s position→C3=0
15-bit Hamming Code: It transmit 11 data bits, 4 parity bits located 20
21 22 23 Word format is

 P1 P2 D3 P4 D5 D6 D7 P8 D9 D10 D11 D12 D13 D14 D15

12-Bit Hamming Code:It transmit 8 data bits, 4 parity bits located at position 20 21 22
23 Word format is

 P1 P2 D3 P4 D5 D6 D7 P8 D9 D10 D11 D12

Alphanumeric Codes:

These codes are used to encode the characteristics of alphabet in addition to
the decimal digits. It is used for transmitting data between computers & its I/O device
such as printers, keyboards & video display terminals.Popular modern alphanumeric
codes are ASCII code & EBCDIC code.

