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MODULE 1 

Number systems& Binary codes: 

 Number systems: Number Systems, Radix conversions, complement of numbers. 
 Binary codes: Binary codes, Weighted and non-Weighted codes, BCD code, gray code,  

excess 3codes - Error detecting code, Error Correcting code, Hamming Code 
INTRODUCTION

 

DIGITAL CIRCUIT: 

 Digital circuit is one in which the voltage levels assume a finite number of distinct values. 
 Each voltage level in a practical digital system can actually be a narrow band or range of voltages. 
 Also called as switching circuits, the voltage levels in a digital circuit are assumed to be switched 

from one value to another value instantaneously, that is the transition time is assumed to be zero. 
A) COMBINATIONAL SWITCHING CIRCUITS: 

 The output depends only on the present inputs.  
 They have no memory. 

B) SEQUENTIAL SWITCHING CIRCUITS 
 The output depends on the present inputs as well as the present state of the circuit, 

i.e., on the past values also. 
 These are combinational circuits with memory. 

 SEQUENTIAL SWITCHING CIRCUITS: 
a) SYNCHRONOUS SEQUENTIAL CIRCUITS.: Digital sequential circuits in which the 

feedback to the input for next output generation is governed by clock signals. 
b) ASYNCHRONOUS SEQUENTIAL CIRCUITS: Digital sequential circuits in which the 

feedback to the input for next output generation is not governed by clock signals. 
DIGITAL CIRCUIT is also called as Binary signals or Logic signals. 

 The digital signals are represented by two voltage bands, one band which is near a reference value 
(generally 0), and the other band lies near the supply voltage.  
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 This is similar to the values, ‘0’ and ‘1’ or ‘false’ and ‘true’ of the Boolean domain.  
 This means that at any particular time, a digital signal can represent only one binary digit. 
 The manner in which a logic circuit responds to an input as referred to as the circuit logic. 

Application: 

 Thermometer, photocopies, landline telephones, audiotape recorders, television, computers, 
laptops, mobile phones, wristwatches, wall clocks, are all becoming digital nowadays.  

 It increases the accuracy of the message as well as makes it easy to read. 
Advantages of Digital system or signals: 

 Because of the digital nature, the signals in the digital systems can travel significantly faster over 
digital lines as compared to the Analog signals 

 As compared to Analog signals, digital signals can transfer more data. 
 The digital systems are less expensive, more reliable, easy to manipulate, and more flexible as 

compared to the Analog system. 
 A digital system can be made compatible with other digital systems to which is not possible in the 

Analog system. 
 

1. THE DECIMAL SYSTEM 

 

 

 

2. THE BINARY SYSTEM 

 

 

BINARY TO DECIMAL CONVERSION 

The binary numbering system works just like the decimal numbering system, with two exceptions:  

 binary only allows the digits 0 and 1 (rather than 0–9), and 
 binary uses powers of two rather than powers of ten.  
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Therefore, it is very easy to convert a binary number to decimal. For each “1” in the binary string, add 2n 
where “n” is the bit position in the binary string (0 to n–1 for n bit binary string). 

For example, the binary value 10102 represents the decimal 10 which can be obtained through the 
procedure shown in the table 1: 

Table 1 

Binary No. 1 0 1 0 

Bit Position (n) 3rd 2nd 1st 0th 

Weight Factor (2n) 23 22 21 20 

bit * 2n 1*23 0*22 1*21 0*20 

Decimal Value 8 0 2 0 

Decimal Number 8 + 0 + 2 + 0 = 10 

All the steps in above procedure can be summarized in short as 

1*23 + 0*22 + 1*21 + 0*20 = 8 + 0 + 2 + 0 = 1010 

i.e., 

1. Multiply each digit of the binary number by its positional weight and then add up the result. 

2. If any digit is 0, its positional weight is not to be taken into account. 

DECIMAL TO BINARY CONVERSION 

 

3. OCTAL NUMBERING SYSTEM: 

 The octal number system uses base 8 instead of base 10 or base 2.  
 This is sometimes convenient since many computer operations are based on bytes (8 bits). In octal, 

we have 8 digits at our disposal, 0–7. 
DECIMAL  OCTAL 

0 0  
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1 1 
2 2 
3 3 
4 4 
5 5 
6 6 
7 7 
8 10 
9 11 
10 12 
11 13 
12 14 
13 15 
14 16 
15 17 
16 20 

 

Octal to binary 
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3. HEXADECIMAL NUMBERING SYSTEM 
• Hexadecimal uses a base 16 numbering system. This means that we have 16 symbols to use for 

digits. Consequently, we must invent new digits beyond 9.  

• The digits used in hex are the letters A, B, C, D, E, and F.  
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NEGATIVE NUMBERS AND THEIR ARITHMETIC 

So far, we have discussed straight forward number representation which are nothing but positive number. 
The negative numbers have got two representation 

 Complement representation. In digital computers to simplify the subtraction operation & for logical 
manipulation complements are used. There are two types of complements used in each radix system. 

o The radix complement or r’s complement 
o The diminished radix complements or (r-1)’s complement 

 
r’s Complement and (r – 1)’s Complement 

The r’s and (r – 1)’s complements are generalized representation of the complements. r stands for 
radix or base of the number system; thus, r’s complement is referred as radix complement and (r – 
1)’s complement is referred as diminished radix complement. Examples of r’s complements are 2’s 
complement and 10’s complement. Examples of (r – 1)’s complement are 1’s complement and 9’s 

 
 Sign magnitude representation : Representation of signed no’s binary arithmetic in computers: Two 

ways of representation of signed no’s Sign Magnitude for Complemented form, Two complimented 
forms: 1‘s compliment form, & 2‘s compliment form 

1’s and 2’s Complement: These are the complements used for binary numbers. Their 
representation are very important as digital systems work on binary numbers only. 

1’s Complement 

bit Actual binary complement 
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1’s complement of a binary number is 
obtained simply by replacing each 1 by 0 
and each 0 by 1. Alternately, 1’s 
complement of a binary can be 
obtained by subtracting each bit from 1. 

 

  

EX: Find 1’s complement of (i) 011001 (ii) 00100111 

Sol: (i) Replace each 1 by 0 and each 0 by 1  

0 1 1 0 0 1 

↓ ↓ ↓ ↓ ↓ ↓ 

1 0 0 1 1 0 

So, 1’s complement of 011001 is 100110. 

2’s Complement: 2’s complement of a binary number can be obtained by adding 1 to its 1’s complement. 

EX: Find 2’s complement of (i) 011001 (ii) 010110016  

Solution.  

 

 

Subtraction Using 1’s and 2’s Complement 

Before using any complement method for subtraction equate the length of both minuend and subtrahend 
by introducing leading zeros. 

1’s complement subtraction following are the rules for subtraction using 1’s complement. 

1. To do the subtraction  (M-S), represent the M&S in equal no. of digits. 

2. Add 1’s complement of subtrahend to minuend. 

3. If a carry is produced by addition, then add this carry to the LSB of result. This is called as end around 
carry (EAC). 

4. If carry is generated from MSB in step 2 then result is positive. If no carry generated result is negative, 
and is in 1’s complement form. 

EX: Perform binary subtraction for (23)10-(11)10 

Sol: M= 23, 10111 

 S= 11, 1011 

1’s Complement 1 0 

 0 1 



DIGITAL ELECTRONICS 
 

 
 | MREC(A) 

Step 1: represent the M&S in equal no. of digits. 10111=23 

             01011=11 

Step 2: 1’s complement of subtrahend (01011) = 10100 

 Add 1’s complement of subtrahend to minuend 10111= M 

              +  10100=1’S Comp of S 

      Carry 

Step3: If a carry is produced by addition, then add this carry to the LSB of result. 

01011 

+      1 

01100   =12 

2’s complement Subtraction: 

 Method of 2’s complement is similar to 1’s complement subtraction except the end around carry (EAC). 
The rules are listed below: 

1. To do the subtraction (M-S), represent the M&S in equal no. of digits. 
2. Take 2’s complement of subtrahend. Add 2’s complement of subtrahend to minuend. 

3. If a carry is produced, then discard the carry and the result is positive. If no carry is produced result is 
negative and is in 2’s compliment form. 

EX: Perform binary subtraction for (22)10-(12)10 Using 2’s complement 

Sol: M= 22, 10110 

 S= 12, 1100 

Step 1: represent the M&S in equal no. of digits. 10110=22 

             01100=12 

Step 2: 2’s complement of subtrahend (01100) = 10100 

 Add 2’s complement of subtrahend to minuend 10110= M 

              +  10100=1’S Comp of S 

Carry 

(Neglected)  

Step 3:  If a carry is produced, then discard the carry and the result is positive = (01010) = (10)10 

Signed Binary Representation 

Untill now we have discussed representation of unsigned (or positive) numbers, except one or two places. 
In computer systems sign (+ve or –ve) of a number should also be represented by binary bits. 

The accepted convention is to use 1 for negative sign and 0 for positive sign. In signed representation 
MSB of the given binary string represents the sign of the number, in all types of representation. We have 
two types of signed representation: 

101011 

101010 
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1. Signed Magnitude Representation 

2. Signed Complement Representation 

sign magnitude representation. 

In a signed-magnitude representation, the MSB represent the sign and rest of the bits represent the 
magnitude. e.g.,  

Note that positive number is represented similar to unsigned number. 
From the example it is also evident that out of 4-bits, only 3-bits are used to represent the magnitude.  

 

Complement of signed magnitude representation  

In a signed-complement representation the positive numbers are represented in true binary form with 
MSB as 0. Whereas the negative numbers are represented by taking appropriate complement of equivalent 
positive number, including the sign bit. Both 1’s and 2’s complements can be used for this purpose e.g., 

+5 = (0101)2 

–5 = (1010)2 ←in 1’s complement 

      = (1011)2 ←in 2’s complement 

 

9’s and 10’s Complement 

9’s and 10’s complements are the methods used for the representation of decimal numbers. They are 
identical to the 1’s and 2’s complements used for binary numbers. 

9’s complement: 9’s complement of a decimal number is defined as (10n – 1) – N, where n is no. of digits 
and N is given decimal numbers. Alternately, 9’s complement of a decimal number can be obtained by 
subtracting each digit from 9.  

9’s complement of N = (10n–1) –N 
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EX: Find out the 9’s complement of (36)10. 

Sol: By using (10n–1) – N; n = 2. So, (10n–1) – N = (100 – 1) – 36=63 

 

10’s complement: 10’s complement of a decimal number is defined as 10n – N.10’s complement of N = 
10n – N    (or) 

10n – N = (10n – 1) – N + 1= 9’s complement of N + 1. Thus, 10’s complement of a decimal number can 
also be obtained by adding 1 to its 9’s complement. 

EX: Find out the 10’s complement of (36)10. 

 

CODES 

Coding and encoding is the process of assigning a group of binary digits, commonly referred to as ‘bits’, 
to represent, identify, or relate to a multivalued items of information. In short, a code is a symbolic 
representation of an information transform. The bit combination is referred to as ‘CODEWORDS’. 

In a broad sense we can classify the codes into five groups: 

(i) Weighted Binary codes (ii) Non-weighted codes (iii) sequential codes(iv) Error–detecting codes 
(v) Error–correcting codes (vi) Alphanumeric codes 

i) Weighted Binary Codes 
In weighted binary codes, each position of a number represents a specific weight. The bits are multiplied 
by the weights indicated; and the sum of these weighted bits gives the equivalent decimal digit. 

a) Straight Binary coding: is a method of representing a decimal number by its binary equivalent. A 
straight binary code representing decimal 0 through 7 

 

 

b) Binary Codes Decimal Codes (BCD codes). In BCD codes, individual decimal digits are coded in 
binary notation and are operated upon singly. Thus, binary codes representing 0 to 9 decimal digits 
are allowed. Therefore, all BCD codes have at least four bits (  min. no. of bits required to encode 
to decimal digits = 4) For example, decimal 364 in BCD 
3 → 0011 
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6 → 0110 

4 → 0100 

364 → 0011 0110 0100 

However, we should realize that with 4 bits, total 16 combinations are possible (0000, 0001, ..., 1111) but 
only 10 are used (0 to 9). The remaining 6 combinations are invalid and commonly referred to as 
‘UNUSED CODES’ 

ii) Non weighted codes  

Non weighted codes are codes that are not positionally weighted. That is, each position within the binary 
number is not assigned a fixed value. Ex: Excess-3 code, Gray code. 

Excess-3 Code  

Excess-3 is a non-weighted code used to express decimal numbers. The code derives  its name from the 
fact that each binary code is the corresponding 8421 code plus  0011(3).  
 

 
 
 
 
 
 

 

Gray Code  

The Gray code belongs to a class of codes called minimum change codes, in which only one bit in the 
code changes when moving from one code to the next. The Gray code is non-weighted code, as the 
position of bit does not contain any weight.  The Gray code is a reflective digital code which has the 
special property that any two subsequent numbers codes differ by only one bit. This is also called a unit- 
distance code. In digital Gray code has got a special place. 

 



DIGITAL ELECTRONICS 
 

 
 | MREC(A) 
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XS-3 gray code: 
 

In a normal gray code , the bit patterns for 0(0000) & 9(1101) do not have a unit 
distance between them i.e, they differ in more than one position.In xs-3 gray code , 
each decimal digit is encoded with gray code patter of the decimal digit that is greater 
by 3. It has a unit distance between the patterns for 0 & 9. 
 
XS-3 gray code for decimal digits 0 through 9  
 

Decimal digit  Xs-3 gray code   Decimal digit Xs-3 gray code  
        

0 0010                  5 1100  
        

1 0110                  6 1101  
        

2 0111                  7 1111  
        

3 0101                  8 1110  
        

4 0100                  9 1010  
 

iii) Sequential Codes  

A code is said to be sequential when two subsequent codes, seen as numbers in binary representation, 
differ by one. This greatly aids mathematical manipulation of data. The 8421 and  

Excess-3 codes are sequential, whereas the 2421 and 5211 codes are not. 

 
Binary coded decimal (bcd) and its arithmetic:  

The BCD is a group of four binary bits that represent a decimal digit. In this representation each digit of a 
decimal number is replaced by a 4-bit binary number (i.e., a nibble). Since a decimal digit is a number 
from 0 to 9, a nibble representing a number greater than 9 is invalid BCD. For example (1010)2 is invalid 
BCD as it represents a number greater than 9.  
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BCD Addition: In many application it is required to add two BCD numbers. But the adder circuits used 
are simple binary adders, which does not take care of peculiarity of BCD representation. Thus one must 
verify the result for valid BCD by using following rules: 

1. If Nibble (i.e., group of 4-bits) is less than or equal to 9, it is a valid BCD number. 

2. If Nibble is greater than 9, it is invalid. Add 6 (0110) to the nibble, to make it valid. Or If a carry was 
generated from the nibble during the addition, it is invalid. Add 6 (0110) to the nibble, to make it valid. 

3. If a carry is generated when 6 is added, add this carry to next nibble. 

EX: Add the BCD numbers i)1000 and 0101 and ii) 00011001 and 00011000 

 
 

BCD Subtraction: 

The best way to cary out the BCD subtraction is to use complements. e. Although any of the two 
complements can be used, we prefer 10’s complement for subtraction. Following are the steps to be 
followed for BCD subtraction using 10’s complement: 

1. Add the 10’s complement of subtrahend to minuend. 
2. Apply the rules of BCD addition to verify that result of addition is valid BCD. 
3. Apply the rules of 10’s complement on the result obtained in step 2, to declare the final result i.e.,  
to declare the result of subtraction. 
Ex: Subtract 61 from 68 using BCD. 
Solution. To illustrate the process first we perform the subtraction using 10’s comple ment in decimal 
system. After that we go for BCD subtraction. 
we have, D = 68 – 61 
So, 10’s complement of 61 = 99 – 61 + 1 = 39 
 
 
 
 
 
 
 
 
 
Some example of BCD codes are: 
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(a) 8421 BCD code, sometimes referred to as the Natural Binary Coded Decimal Code (NBCD); 
(b)* Excess-3 code (XS3); adding 3 to BCD gives the Excess -3 code. 
(c)** 84 –2 –1 code (+8, +4, –2, –1); 
(d) 2 4 2 1 code 
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Binary codes block diagram 
 
 
Error – Detecting codes: When binary data is transmitted & processed,it is susceptible to noise 
that can alter or distort its contents. The 1‘s may get changed to 0‘s & 1‘s .because digital 
systems must be accurate to the digit, error can pose a problem. Several schemes have been 
devised to detect the occurrence of a single bit error in a binary word, so that whenever such 
an error occurs the concerned binary word can be corrected & retransmitted. 
 
Parity: The simplest techniques for detecting errors is that of adding an extra bit known as 
parity bit to each word being transmitted.Two types of parity: Oddparity, evenparity forodd 
parity, the parity bit is set to a ‗0‘ or a ‗1‘ at the transmitter such that the total no. of 1 bit 
in the word including the parity bit is an odd no.For even parity, the parity bit is set to a ‗0‘ 
or a ‗1‘ at the transmitter such that the parity bit is an even no. 
 
 

Decimal  8421 code   Odd parity  Even parity  
          

0 0000 1 0   
          

1 0001 0 1   
          

2 0010 0 1   
          

3 0011 1 0   
          

4 0100 0 1   
          

5 0100 1 0   
          

6 0110 1 0   
          

7 0111 0 1   
          

8 1000 0 1   
          

9 1001 1 0   
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When the digit data is received . a parity checking circuit generates an error signal if 

the total no of 1‘s is even in an odd parity system or odd in an even parity system. This parity 
check can always detect a single bit error but cannot detect 2 or more errors with in the same 
word.Odd parity is used more often than even parity does not detect the situation. Where all 
0‘s are created by a short ckt or some other fault condition. 
 
Ex: Even parity scheme  
(a) 10101010 (b) 11110110 (c)10111001  
Ans:  

(a) No. of 1‘s in the word is even is 4 so there is no error  
(b) No. of 1‘s in the word is even is 6 so there is no error  
(c) No. of 1‘s in the word is odd is 5 so there is error 

 
Ex: odd parity   
(a)10110111 (b) 10011010 (c)11101010 

 
 
Ans:  

(a) No. of 1‘s in the word is even is 6 so word has error  
(b) No. of 1‘s in the word is even is 4 so word has error  
(c) No. of 1‘s in the word is odd is 5 so there is no error 

 
 
Checksums: 
 

Simple parity can‘t detect two errors within the same word. To overcome this, use a 
sort of 2 dimensional parity. As each word is transmitted, it is added to the sum of the 
previously transmitted words, and the sum retained at the transmitter end. At the end of 
transmission, the sum called the check sum. Up to that time sent to the receiver. The receiver 
can check its sum with the transmitted sum. If the two sums are the same, then no errors 
were detected at the receiver end. If there is an error, the receiving location can ask for 
retransmission of the entire data, used in teleprocessing systems. 
 
 
Block parity: 
 

Block of data shown is create the row & column parity bits for the data using 
odd parity. The parity bit 0 or 1 is added column wise & row wise such that the total 
no. of 1‘s in each column & row including the data bits & parity bit is odd as 
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Data  Parity bit  data 
10110 0  10110 
10001 1  10001 
10101 0  10101 
00010 0  00010 
11000 1  11000 
00000 1  00000 
11010  0  11010 

 
 
 
 
 
Error –Correcting Codes: 
 

A code is said to be an error –correcting code, if the code word can always be deduced from an 
erroneous word. For a code to be a single bit error correcting code, the minimum distance of that code 
must be three. The minimum distance of that code is the smallest no. of bits by which any two code 
words must differ. A code with minimum distance of 3 can‘t only correct single bit errors but also 
detect ( can‘t correct) two bit errors, The key to error correction is that it must be possible to detect & 
locate erroneous that it must be possible to detect & locate erroneous digits. If the location of an error 
has been determined. Then by complementing the erroneous digit, the message can be corrected , 
error correcting , code is the Hamming code , In this , to each group of m information or message or 

data bits, K parity checking bits denoted by P1,P2,----------pk located at positions 2 k-1 from left are 
added to form an (m+k) bit code word.  
To correct the error, k parity checks are performed on selected digits of each code 
word, & the position of the error bit is located by forming an error word, & the error bit 
is then complemented. The k bit error word is generated by putting a 0 or a 1 in the 2 k-

1th position depending upon whether the check for parity involving the parity bit Pk is 
satisfied or not.Error positions & their corresponding values : 
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Error Position  For 15 bit code  For 12 bit code For 7 bit code 
  C4 C3 C2 C1   C4 C3 C2 C1 C3 C2 C1 
          

0 0000   0000  0 0 0  
          

1 0001   0001  0 0 1  
          

2 0010   0010  0 1 0  
          

3 0011   0011  0 1 1  
          

4 0100   0100  1 0 0  
          

5 0101   0101  1 0 1  
               

6 0 1 1 0   0 1 1 0  1 1 0  
               

7 0 1 1 1  0 1 1 1 1 1 1 
               

8 1 0 0 0  1 0 0 0    
               

9 1 0 0 1  1 0 0 1    
               

10 1 0 1 0  1 0 1 0    
               

11 1 0 1 1  1 0 1 1    
              

12 1 1 0 0 1 1 0 0    
               

13 1 1 0  1         
               

14 1 1 1  0         
               

15 1 1 1  1         
               

 
 
 
7- bit Hamming code: 
 

To transmit four data bits, 3 parity bits located at positions 20 21&22 from 
left are added to make a 7 bit codeword which is then transmitted. 
 

The word format                        
                        
 P1   P2   D3  P4  D5 D6    D7      
                        

D—Data bits P-                     
Parity bits                        
              
Decimal Digit For BCD       For Excess-3      
  P1P2D3P4D5D6D7    P1P2D3P4D5D6D7   
                      

0  0 0 0   0 0 0 0   1 0 0 0 0  1 1  
                      

1  1 1 0   1 0 0 1   1 0 0 1 1  0 0  
                      

2  0 1 0   1 0 1 1   0 1 0 0 1  0 1  
                      

3  1 0 0   0 0 1 1   1 1 0 0 1  1 0  
                      

4  1 0 0   1 1 0 0   0 0 0 1 1  1 1  
                    

5  0 1 0 0 1 0 1   1 1 1 0 0  0 0  
                      

6  1 1 0   0 1 1 0   0 0 1 1 0  0 1  
                     

7  0 0 0   1 1 1 1   1 0 1 1 0 1 0  
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8 1 1 1 0 0 0 0 0 1 1 0 0 1 1 
               

9 0 0 1 1 0 0 1 0 1 1 1 1 0 0 
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Ex: Encode the data bits 1101 into the 7 bit even parity Hamming Code  
The bit pattern is  
P1P2D3P4D5D6D7 
 
1 1 0 1 
 

Bits 1,3,5,7 (P1 111) must have even parity, so P1 =1  
Bits 2, 3, 6, 7(P2 101) must have even parity, so P2 =0  
Bits 4,5,6,7 (P4 101)must have even parity, so P4 =0  

The final code is 1010101  
EX: Code word is 1001001  
Bits 1,3,5,7 (C1 1001) →no error →put a 0 in the 1‘s position→C1=0  
Bits 2, 3, 6, 7(C2 0001)) → error →put a 1 in the 2‘s position→C2=1  
Bits 4,5,6,7 (C4 1001)) →no error →put a 0 in the 4‘s position→C3=0  
15-bit Hamming Code: It transmit 11 data bits, 4 parity bits located 20 
21 22 23 Word format is   

 P1  P2    D3    P4    D5    D6    D7    P8    D9    D10  D11  D12  D13  D14  D15   
 
 

12-Bit Hamming Code:It transmit 8 data bits, 4 parity bits located at position 20 21 22 
23 Word format is   

 P1     P2     D3    P4     D5    D6    D7    P8     D9    D10  D11  D12   
 
 
Alphanumeric Codes: 
 

These codes are used to encode the characteristics of alphabet in addition to 
the decimal digits. It is used for transmitting data between computers & its I/O device 
such as printers, keyboards & video display terminals.Popular modern alphanumeric 
codes are ASCII code & EBCDIC code. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      


